Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis
نویسندگان
چکیده
Tracheary element differentiation requires strict coordination of secondary cell wall synthesis and programmed cell death (PCD) to produce a functional cell corpse. The execution of cell death involves an influx of Ca2+ into the cell and is manifested by rapid collapse of the large hydrolytic vacuole and cessation of cytoplasmic streaming. This precise means of effecting cell death is a prerequisite for postmortem developmental events, including autolysis and chromatin degradation. A 40-kD serine protease is secreted during secondary cell wall synthesis, which may be the coordinating factor between secondary cell wall synthesis and PCD. Specific proteolysis of the extracellular matrix is necessary and sufficient to trigger Ca2+ influx, vacuole collapse, cell death, and chromatin degradation, suggesting that extracellular proteolysis plays a key regulatory role during PCD. We propose a model in which secondary cell wall synthesis and cell death are coordinated by the concomitant secretion of the 40-kD protease and secondary cell wall precursors. Subsequent cell death is triggered by a critical activity of protease or the arrival of substrate signal precursor corresponding with the completion of a functional secondary cell wall.
منابع مشابه
Signaling, transcriptional regulation, and asynchronous pattern formation governing plant xylem development
In plants, vascular stem cells continue to give rise to all xylem and phloem cells, which constitute the plant vascular system. During plant vascular development, the peptide, tracheary element differentiation inhibitory factor (TDIF), regulates vascular stem cell fate in a non-cell-autonomous fashion. TDIF promotes vascular stem cell proliferation through up-regulating the transcription factor...
متن کاملTracheary element differentiation.
Tracheary elements (TEs) are cells in the xylem that are highly specialized for transporting water and solutes up the plant. TEs undergo a very well-defined process of differentiation that involves specification, enlargement, patterned cell wall deposition, programmed cell death and cell wall removal. This process is coordinated such that adjacent TEs are joined together to form a continuous ne...
متن کاملProteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis.
Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiati...
متن کاملTracheary Element Differentiation and Secondary Cell-wall Formation in Cell Cultures of Coniferous Gymnosperms*
Tracheary element differentiation and secondary cell-wall formation have been studied in cell cultures of coniferous gymnosperms. Factors that influence tracheary element differentiation are (i) the sucrose concentration in the media, (ii) the concentration of nutrients in the media, (iii) temperature and light, and (iv) the types and concentrations of phytohormones in the media. There are adva...
متن کاملArabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation.
Xylem consists of three types of cells: tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanisms underlying these processes. Here, we show that VASCULAR-RELATED NAC-DOMAIN6 (VND6),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 119 2 شماره
صفحات -
تاریخ انتشار 1999